





# GERMINAÇÃO E CRESCIMENTO DE PLÂNTULAS DE FEIJÃO SUBMETIDAS AO TRATAMENTO DE SEMENTE COM ÓLEOS ESSENCIAIS

<u>Gislaine A. de TOLEDO</u><sup>1</sup>; Felipe S. FERNANDES<sup>1</sup>; Evandro L. de MATOS JUNIOR<sup>1</sup>; Hebe P. de CARVALHO<sup>2</sup>

#### **RESUMO**

O tratamento de sementes com óleos essenciais, vêm sendo testado como alternativa no tratamento de sementes visando avaliar se interfere na sua qualidade fisiológica. Sendo assim, objetivou-se com a pesquisa verificar se os óleos essenciais de capim-limão, botões florais de cravo, gengibre e hortelã interferem na germinação e vigor de sementes de feijão cv. BRS Estilo. Foram avaliadas a primeira contagem, germinação (plântulas normais, plântulas anormais e sementes mortas) e massa seca das plântulas) e massa seca das plântulas normais. Conclui-se que todos os óleos essenciais testados capim-limão, cravo, gengibre e hortelã afetam a germinação e o desenvolvimento das plântulas de feijão cv. BRS Estilo, sendo que a redução na porcentagem de plântulas normais e aumento de plântulas anormais é maior quando se utiliza o óleo essencial de capim-limão.

Palavras-chave: Phaseolus vulgaris; qualidade fisiológica; alelopatia; compostos voláteis.

# 1 INTRODUÇÃO

O feijão comum, conhecido como *Phaseolus vulgaris* L., é a espécie mais cultivada do gênero *Phaseolus*. Essa cultura possui grande importância no Brasil devido às suas propriedades proteicas e energéticas, sendo amplamente consumida na dieta da população brasileira. Além disso, o feijão comum desempenha um papel social e econômico significativo, pois é responsável pelo suprimento alimentar de grande parte da população de baixa renda e contribui para a sustentabilidade das famílias brasileiras.

Dentre os fatores limitantes para a produção de feijão estão as doenças de importância econômica, sendo que cerca de 80% delas são transmitidas pelas sementes. Para se ter um controle mais eficiente das doenças se faz necessário conhecer o fungo, a sua incidência nas sementes, além da utilização de produtos que possam ser utilizados no tratamento das mesmas, visando obtenção de alta qualidade sanitária e fisiológica (SANTOS, 2018).

Diante disso, produtos naturais, como extratos e óleos essenciais, por exemplo, vêm sendo avaliados como alternativa no tratamento de sementes. Esses derivados vegetais possuem metabólitos secundários que pertencem a diferentes classes de substâncias químicas, apresentando atividades biológicas que podem ser antimicrobianas, podendo ser uma alternativa no controle de fitopatógenos

<sup>&</sup>lt;sup>1</sup>Discentes do curso de Engenharia Agronômica, IFSULDEMINAS – Campus Inconfidentes. E-mail: <u>gislaine.toledo@alunos.ifsuldeminas.edu.br;</u> <u>felipe.fernandes@alunos.ifsuldeminas.edu.br;</u> <u>evandro.junior@alunos.ifsuldeminas.edu.br.</u>

<sup>&</sup>lt;sup>2</sup>Docente, IFSULDEMINAS – Campus Inconfidentes. E-mail: <u>Hebe.carvalho@ifsuldeminas.edu.br</u>.

(GOMES, 2016; LEITE, 2020). Entretanto, há necessidade de estudos sobre o efeito dos óleos essenciais sobre a germinação e desenvolvimento de plântulas.

Sendo assim, objetivou-se com a pesquisa verificar se os óleos essenciais de capim-limão botões florais de cravo, gengibre e hortelã interferem na germinação e vigor de sementes de feijão cv. BRS Estilo.

## 2 MATERIAL E MÉTODOS

O experimento foi conduzido no Laboratório de Sementes do Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Campus Inconfidentes.

Foram utilizadas sementes de feijão do grupo carioca, cv. BRS Estilo, com pureza de 98% e germinação mínima de 80%.

Os óleos essenciais de capim-limão (*Cymbopogon flexuosus*), botões florais de cravo (*Eugenia caryophyllus*), gengibre (*Zingiber officinale*) e hortelã (*Mentha piperita*) utilizados nos experimentos, foram adquiridos da empresa Ferquima Indústria e Comércio Ltda.

O delineamento experimental utilizado foi o inteiramente casualizado em esquema fatorial 4 x 3, correspondendo a quatro óleos essenciais (capim-limão, botões florais de cravo, gengibre e hortelã) e 3 concentrações dos óleos essenciais (0; 0,5 e 1 µL mL<sup>-1</sup>), com 4 repetições.

O teste de germinação foi realizado em rolo de papel toalha, tipo germitest, sendo distribuídas 50 sementes por rolo, totalizando 200 sementes por tratamento. A metodologia utilizada para montagem e incubação das sementes foi a descrita nas Regras para Análise de Sementes – RAS (BRASIL, 2009). Os resultados foram expressos em porcentagem de plântulas normais, plântulas anormais e sementes mortas. Determinou-se também a massa seca de plântulas normais (mg/planta) obtidas do teste de germinação aos 9 dias após semeadura.

Os dados obtidos foram submetidos à análise de variância utilizando o programa Sisvar (FERREIRA, 2019). As variáveis significativas no teste F foram comparadas pelo teste Scott-Knott, a 1% de significância.

#### 4 RESULTADOS E DISCUSSÃO

Verificou-se que houve interação significativa entre os óleos essenciais e as concentrações utilizadas no tratamento de sementes de feijão cv. BRS Estilo para as variáveis primeira contagem, germinação, plântulas anormais, sementes mortas e massa seca das plântulas.

A análise dos efeitos de diferentes concentrações dos óleos de capim-limão, cravo, gengibre e hortelã nas sementes de feijão cv. BRS Estilo mostrou que o óleo de capim-limão reduziu a germinação em 9% na concentração de 0,5 μL mL<sup>-1</sup> e em 8% na concentração de 1 μL mL<sup>-1</sup>. Os óleos de cravo e gengibre reduziram a germinação apenas na concentração de 1 μL mL<sup>-1</sup>, com reduções de

12% e 22% respectivamente. O óleo de hortelã não teve um efeito significativo na germinação. Além disso, o óleo essencial de capim-limão reduziu drasticamente a porcentagem de plantas normais nas concentrações testadas, enquanto o óleo de cravo teve impactos negativos na germinação e no crescimento das plantas normais, especialmente na concentração de 1 µL mL<sup>-1</sup>. O óleo de gengibre também teve um efeito negativo na germinação e na porcentagem de plantas normais, mas não apresentou diferenças significativas na massa seca das plantas normais. Por outro lado, o óleo essencial de hortelã reduziu a germinação e aumentou a porcentagem de plantas anormais, mas também reduziu a porcentagem de sementes mortas e aumentou a massa seca das plantas normais (Tabela 1).

Tabela 1 – Valores médios em porcentagem de 1º contagem (1ºC), germinação(G), plântulas anormais (PA), sementes mortas (SM) e massa seca em mg para plântulas de feijão cv. BRS Estilo, em função do tratamento de sementes com diferentes concentrações de óleos essenciais de capim limão, cravo, gengibre e hortelã. Inconfidentes – MG, 2022.

|            | Tratamento   |             |        |          |         |
|------------|--------------|-------------|--------|----------|---------|
| Variáveis  | Concentração | Capim limão | Cravo  | Gengibre | Hortelã |
|            | 0            | 84aA        | 84aA   | 84aA     | 84aA    |
| 1ª C       | 0,5          | 75bB        | 86aA   | 86aA     | 76aB    |
| (%)        | 1            | 74bA        | 72bA   | 62bB     | 77aA    |
|            | CV           | 6,36        |        |          |         |
| G          | 0            | 81aA        | 81aA   | 81aA     | 81aA    |
| (plântulas | 0,5          | 0,0bB       | 73bA   | 71bA     | 65bA    |
| normais)   | 1            | 0,0bC       | 45cB   | 64bA     | 69bA    |
| (%)        | CV           | 6,89        |        |          |         |
|            | 0            | 7bA         | 7cA    | 7bA      | 7bA     |
| $PA^1$     | 0,5          | 93aA        | 27bB   | 22aB     | 25aB    |
| (%)        | 1            | 89aA        | 49aB   | 20aC     | 24aC    |
|            | CV           | 7,04        |        |          |         |
|            | 0            | 12aA        | 12aA   | 12aA     | 12aA    |
| $SM^1$     | 0,5          | 7bA         | 6bA    | 7bA      | 10aA    |
| (%)        | 1            | 11aB        | 7bB    | 16aA     | 7bB     |
|            | CV           | 11,65       |        |          |         |
|            | 0            | 1,40aA      | 1,40aA | 1,40aA   | 1,40aA  |
| $MS^1$     | 0,5          | 0,00bD      | 0,58bC | 1,70aA   | 0,93bB  |
| (mg)       | 1            | 0,00bC      | 0,12cB | 1,40aA   | 1,20aA  |
|            | CV           | 7,82        |        |          |         |

Médias seguidas de mesma letra minúscula na coluna e maiúscula na linha não diferem entre si, pelo teste Scott-Knott , a nível de 1% de significância.

#### 5 CONCLUSÃO

Todos os óleos essenciais testados capim-limão, cravo, gengibre e hortelã afetam a germinação e o desenvolvimento das plântulas de feijão cv. BRS Estilo, sendo que a redução na porcentagem de plântulas normais e aumento de plântulas anormais é maior quando se utiliza o óleo

<sup>&</sup>lt;sup>1</sup>Dados transformados  $\sqrt{y} + 0.5$ .

## REFERÊNCIAS

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. **Regras para análise de sementes. Secretaria de Defesa Agropecuária.** Brasília, DF: Mapa/ACS, 2009. 395p. Disponível em: https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946\_regras\_analise\_\_sementes.pdf. Acesso em: 11 ago. 2023.

FERREIRA, D. F. SISVAR: a computer analysis system to fixed effects split plot type designs. **Revista Brasileira de Biometria**, v. 37, n. 4, p. 529-535, 2019. Disponível em: https://biometria.ufla.br/index.php/BBJ/article/view/450 . Acesso em: 28 set. 2022.

GOMES, R. S. S.; NUNES, M. C.; NASCIMENTO, L. C.; SOUZA, J. O.; PORCINO, M. M. Eficiência de óleos essenciais na qualidade sanitária e fisiológica em sementes de feijão-fava (Phaseolus lunatus L.). **Revista Brasileira de Plantas Medicinais.** Campinas, SP, v. 18, n. 1, p. 279-287. jan. 2016. Disponível em:

http://www.scielo.br/pdf/rbpm/v18n1s1/1516-0572-rbpm-18-1-s1-0279.pdf. Acesso em: 11, ago., 2023.

LEITE, K. Óleos essenciais no tratamento de sementes de *Phaseolus vulgaris* L. durante o armazenamento. **Revista Verde de Agroecologia e Desenvolvimento Sustentável**. Pombal, PB, v. 13, n. 2, p. 186-199, 16 out. 2022. Disponível em: https://www.gvaa.com.br/revista/index.php/RVADS. Acesso em: 11 ago, 2023.

SANTOS, K. M. et al. Ocorrência de fungos em sementes de feijão comum pérola. **Tecnologia e Ciência Agropecuária**, João Pessoa, v. 12, n. 2, p. 71-75, jun. 2018. Disponível em: http://revistatca.pb.gov.br/edicoes/volume-12-2018/volume-12-n-2-2018/11-ce-0218-09-ocorrencia-de-fungos-em-sementes-de-feijao.pdf. Acesso em: 11 ago. 2023.